\qquad

Periodic Table and Quantum Numbers

1. List the complete electronic configuration of each of the following. You may use [] around an inert gas element symbol to indicate the electrons up to and including that element.
A. $\quad \mathrm{Fe}^{2+} \quad[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
B. Fe^{3+} $[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
C. $\mathrm{Si}^{4+} \quad[\mathrm{Ne}]$
D. Cl^{-1} $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
E. N^{5+} [He]
2. List five species (ions or atoms) with the electronic configuration
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6}$
Se^{2}
\qquad
$\xrightarrow{\mathrm{Kr}}$
\qquad
$\xrightarrow{\mathrm{Sr}^{2+}}$
3. What type of orbital (s, p, d, or f) are being filled across the first, second, and third transition series? __ d orbitals
4. What type of orbitals are being filled across the rare earth elements and the actinides?
\qquad
5. Give a general description of the valance electrons for each of the indicated columns of the periodic table. See example. (Be sure to use a modern table - column designations have changed).

Column
EX. Alkali Metals
Alkaline earths
Halogens
Group 13 (boron elements)

Valance configuration
$\mathrm{ns}^{1}, \mathrm{n}=1$ to 7
$\mathrm{ns}^{2}, \mathrm{n}=2-7$
$\ldots \mathrm{ns}^{2} \mathrm{np}{ }^{5}, \mathrm{n}=2-6$
$\ldots \mathrm{ns}^{2} \mathrm{np}^{1}, \mathrm{n}=2-6$
6. List the valence electrons of the following species.
A. Mg \qquad
B. Ga
$4 s^{2} 4 p^{1}$
C. S \qquad
D. F \qquad
E. Co \qquad
7. How many electrons can each of the following subshells hold?
A. 4 s \qquad
B. 4 d

10
C. $3 p$

6
D. $5 f$

14

